
Useful Namespaces

 The .NET Framework is a library of classes, interfaces, and types that add extra power to
Visual Studio .NET. These features go beyond what is normally provided by a programming
language such as Visual Basic.

 The .NET Framework is truly enormous. To make it more manageable, Microsoft has broken
it into namespaces. The namespaces form a hierarchical catalog that groups related classes and
functions in a meaningful way.

 For example, the System namespace contains basic classes and methods that an application
can use to perform common tasks. The System.Drawing namespace is the part of the System
namespace that holds graphical tools. The System.Drawing.Design, System.Drawing
.Drawing2D, System.Drawing.Imaging, System.Drawing.Printing, and System.Drawing
.Text namespaces further subdivide System.Drawing into fi ner groupings.

 Many of the .NET Framework namespaces are essential for day - to - day programming. For
example, many Visual Basic applications need to produce printouts, so they use the System
.Drawing.Printing namespace. Different applications draw graphics or images on the screen,
so they need to use other System.Drawing namespaces.

 Because so much of the .NET Framework is used in everyday programming tasks, this book
doesn ’ t strongly differentiate between Visual Basic and .NET Framework functionality.
Presumably, the book could have focused solely on the Visual Basic language and ignored the
.NET Framework, but it would have been a much less useful book.

 Although the book covers many useful .NET Framework features, there ’ s a huge amount that
it doesn ’ t cover. The .NET Framework includes hundreds of namespaces that defi ne a huge
number of classes, types, enumerated values, and other paraphernalia.

 The following sections describe some of the highest - level and most useful namespaces
provided by the .NET Framework.

39

c39.indd 881c39.indd 881 12/31/09 7:07:04 PM12/31/09 7:07:04 PM

Copyright Wrox Press. Posted with permission.

882 ❘ CHAPTER 39 USEFUL NAMESPACES

 ROOT NAMESPACES

 Initially a Windows application includes two root namespaces: Microsoft and System.

 NAMESPACES GALORE

 Your program may include references to many other namespaces. If you add
references to development libraries, your program will have access to their
namespaces. For example, you might have Amazon.com, Google, eBay, and other
development toolkits installed, and they come with their own namespaces. Later
versions of Windows will also provide namespaces that you may want to reference.

Also note that the My namespace provides shortcuts that make common
programming tasks easier. For more information on the My namespace, see the
section “ My ” in Chapter 36, “ Confi guration and Resources, ” and Appendix S,
 “ The My Namespace.”

 The Microsoft Namespace

 The Microsoft root namespace contains Microsoft - specifi c items. In theory, any vendor can
implement .NET languages that translate into Intermediate Language (IL) code. If you were to build
such a language, the items in the Microsoft namespace would generally not apply to your language.
Items in the System namespace described next would be as useful to users of your language as they
are to programmers who use the Microsoft languages, but the items in the Microsoft namespace
would probably not be as helpful.

 The following table describes the most important second - level namespaces contained in the
Microsoft root namespace.

 NAMESPACE CONTAINS

 Microsoft.Csharp Items supporting compilation and code generation for C#.

 Microsoft.JScript Items supporting compilation and code generation for JScript.

 Microsoft.VisualBasic Items supporting compilation and code generation for Visual Basic. Some

of the items in this namespace are useful to Visual Basic programmers,

mostly for compatibility with previous versions of Visual Basic.

 Microsoft.Vsa Items supporting Visual Studio for Applications (VSA), which lets you

include scripting in your application.

 Microsoft.WindowsCE Items supporting Pocket PC and Smartphone applications using the

.NET Compact Framework.

 Microsoft.Win32 Classes that handle operating system events and that manipulate the

System Registry.

c39.indd 882c39.indd 882 12/31/09 7:07:08 PM12/31/09 7:07:08 PM

Copyright Wrox Press. Posted with permission.

Root Namespaces ❘ 883

 The System Namespace

 The System namespace contains basic classes used to defi ne fundamental data types. It also defi nes
important event handlers, interfaces, and exceptions.

 The following table describes the second - level namespaces contained in the System root namespace.

 NAMESPACE CONTAINS

 System.CodeDom Classes for representing and manipulating source - code

documents.

 System.Collections Interfaces and classes for defi ning various collection classes,

lists, queues, hash tables, and dictionaries.

 System.ComponentModel Classes that control design time and runtime behavior of

components and controls. Defi nes several useful code

attributes such as Description, DefaultEvent, DefaultProperty,

and DefaultValue. Also defi nes some useful classes such as

ComponentResourceManager.

 System.Confi guration Classes and interfaces for working with confi guration fi les.

 System.Data Mostly classes for ADO.NET (the .NET version of ADO —

 ActiveX Data Objects). Sub - namespaces include features for

specifi c kinds of databases and database technologies such as

SQL Server, Oracle, OLE DB (Object Linking and Embedding),

and so forth.

 System.Deployment Classes that let you programmatically update ClickOnce

deployments.

 System.Diagnostics Classes for working with system processes, performance

counters, and event logs.

 System.DirectoryServices Classes for working with Active Directory.

 System.Drawing Classes for using GDI+ graphics routines to draw two -

 dimensional graphics, text, and images.

 System.EnterpriseServices Tools for working with COM+ and building enterprise

applications.

 System.Globalization Classes that help with internationalization. Includes tools for

customizing an application ’ s language and resources, and for

using localized formats such as date, currency, and number

formats.

 System.IO Classes for reading and writing streams and fi les.

 System.Linq Classes for LINQ. See Chapter 21, “ LINQ, ” for more information.

continues

c39.indd 883c39.indd 883 12/31/09 7:07:09 PM12/31/09 7:07:09 PM

Copyright Wrox Press. Posted with permission.

884 ❘ CHAPTER 39 USEFUL NAMESPACES

 NAMESPACE CONTAINS

 System.Management Classes for system management and monitoring.

 System.Media Classes for playing sounds. For example, you can use the

following code to play the system ’ s “ hand ” sound:

System.Media.SystemSounds.Hand.Play()

 Example program SystemSounds, which is available for

download on the book ’ s web site, uses this namespace to play

the system sounds.

 System.Messaging Classes for working with message queues to send and receive

messages across the network.

 System.Net Classes for working with network protocols.

 System.Refl ection Classes for working with loaded types. A program can use

these to learn about classes and their capabilities, and to invoke

an object ’ s methods.

 System.Resources Classes to create and manage culture - specifi c resources

programmatically.

 System.Runtime Classes for working with metadata for compilers, interop

services (interoperating with unmanaged code), marshalling,

remoting, and serialization.

 System.Security Classes for security and cryptography.

 System.ServiceProcess Classes that let you implement, install, and control Windows

service processes.

 System.Text Classes representing various character encodings. Also

contains the StringBuilder class, which lets you build

large strings quickly, and classes for working with regular

expressions.

 System.Threading Classes for multithreading.

 System.Timers Timer class.

 System.Transactions Classes for working with transactions involving multiple

distributed components and multiphase notifi cations.

 System.Web Classes for web programming and browser/server interactions.

 System.Windows.Forms Classes that defi ne Windows forms controls (including the Form

class itself).

 System.Xml Classes that let you manipulate XML fi les.

 (continued)

c39.indd 884c39.indd 884 12/31/09 7:07:10 PM12/31/09 7:07:10 PM

Copyright Wrox Press. Posted with permission.

 You can fi nd more detailed information on these namespaces on Microsoft ’ s web pages. The URL for
a namespace ’ s web page is “ msdn.microsoft.com/ ” followed by the namespace followed by “ .aspx ”
as in:

 msdn.microsoft.com/system.codedom.aspx
 msdn.microsoft.com/system.reflection.aspx
 msdn.microsoft.com/system.windows.forms.aspx

 ADVANCED EXAMPLES

 Several chapters in this book cover pieces of the .NET Framework namespaces. For example,
Chapter 36 describes many of the most useful tools provided by the System.Globalization and
System.Resources namespaces. Similarly, Chapters 30 through 34 explain many of the most useful
drawing tools provided by the System.Drawing namespace.

 Other parts of the .NET Framework namespaces are quite specialized, and you may never need to use
them. For example, many developers can use fairly standard installation techniques, so they will never
need to use the System.Deployment classes to programmatically update ClickOnce deployments.

 A few namespaces bear some special mention here, however. They are quite useful in many
situations but they tend to stand separately rather than fi tting nicely into one of the book ’ s major
parts such as IDE, Object - Oriented Programming, or Graphics.

 The following sections give a few examples that demonstrate some of the more useful of these
namespaces.

 Regular Expressions

 A regular expression is a series of symbols that represents a class of strings. A program can use
regular expression tools to determine whether a string matches a regular expression or to extract
pieces of a string that match an expression. For example, a program can use regular expressions to
see if a string has the format of a valid phone number, Social Security number, ZIP code or other
postal code, e - mail address, and so forth.

 The following regular expression represents a 7 - or 10 - digit phone number in the United States:

 ^([2-9]\d{2}-)?[2-9]\d{2}-\d{4}$

 The following table describes the pieces of this expression.

 SUBEXPRESSION MEANING

 ̂ (The caret symbol.) Matches the beginning of the string.

 [2 – 9] Matches the characters 2 through 9 (United States phone numbers cannot

begin with 0 or 1).

 \d Matches any digit 0 through 9.

 {2} Repeats the previous group ([0 – 9]) exactly two times.

Advanced Examples ❘ 885

continues

c39.indd 885c39.indd 885 12/31/09 7:07:11 PM12/31/09 7:07:11 PM

Copyright Wrox Press. Posted with permission.

886 ❘ CHAPTER 39 USEFUL NAMESPACES

 SUBEXPRESSION MEANING

 - Matches a dash.

 ([2 – 9]\d{2} -)? The parentheses group the items inside. The ? matches the previous item

exactly zero or one times. Thus the subexpression matches three digits

and a dash, all repeated zero or one times.

 [2 – 9]\d{2} - Matches one digit 2 through 9 followed by two digits 0 through 9 followed

by a dash.

 \d{4} Matches any digit exactly four times.

 $ Matches the end of the string.

 Taken together, this regular expression matches strings of the form NXX - XXXX and NXX - NXX -
 XXXX where N is a digit 2 through 9 and X is any digit.

 A complete discussion of regular expressions is outside the scope of this book. Search the online
help or the Microsoft web site to learn about the rules for building regular expressions. The web
page msdn.microsoft.com/az24scfc.aspx provides useful links to information about regular
expression language elements. Another useful page is www.regexlib.com/RETester.aspx , which
provides a regular expression tester and a library of useful regular expressions.

 As you read the rest of this section and when visiting regular expression web sites, be aware that
there are a couple different types of regular expression languages, which won ’ t all work with every
regular expression class.

 The following code shows how a program can validate a text fi eld against a regular expression.
When the user changes the text in the txtTestExp control, its Changed event handler creates a new
Regex object, passing its constructor the regular expression held in the txtRegExp text box. It then
calls the Regex object ’ s IsMatch method to see if the text matches the regular expression. If the text
matches, the program sets the txtTestExp control ’ s background color to white. If the text doesn ’ t
match the expression, the program makes the control ’ s background yellow to indicate an error.

Private Sub txtTestExp_TextChanged() Handles txtTestExp.TextChanged
 Dim reg_exp As New Regex(txtRegExp.Text)
 If reg_exp.IsMatch(txtTestExp.Text) Then
 txtTestExp.BackColor = Color.White
 Else
 txtTestExp.BackColor = Color.Yellow
 End If
End Sub

code snippet RegExValidate

 The following example uses a Regex object ’ s Matches method to retrieve a collection of Match
objects that describe the places where a string matches a regular expression. It then loops through
the collection, highlighting the matches in a Rich Text Box.

 (continued)

c39.indd 886c39.indd 886 12/31/09 7:07:12 PM12/31/09 7:07:12 PM

Copyright Wrox Press. Posted with permission.

Advanced Examples ❘ 887

Private Sub btnGo_Click() Handles btnGo.Click
 Dim reg_exp As New Regex(txtPattern.Text)
 Dim matches As MatchCollection
 matches = reg_exp.Matches(txtTestString.Text)

 rchResults.Text = txtTestString.Text
 For Each a_match As Match In matches
 rchResults.Select(a_match.Index, a_match.Length)
 rchResults.SelectionBackColor = Color.Black
 rchResults.SelectionColor = Color.White
 Next a_match
End Sub

code snippet RegExHighlight

 In this example, the regular expression is (in|or) , so the program fi nds matches where the string
contains in or or .

 The following code uses a Regex object to make replacements in a string. It creates a Regex object,
passing its constructor the IgnoreCase option to tell the object to ignore capitalization in the string.
It then calls the object ’ s Replace method, passing it the string to modify and the pattern that it
should use to make the replacement.

Dim reg_exp As New Regex(txtPattern.Text, RegexOptions.IgnoreCase)
lblResult.Text = reg_exp.Replace(Me.txtTestString.Text,
txtReplacementPattern.Text)

code snippet RegExReplace

 The Regex class can perform much more complicated matches. For example, you can use it to fi nd
fi elds within each line in a multiline string and then build a string containing the fi elds reformatted
or reordered. See the online help for more details.

 XML

 Extensible Markup Language (XML) is a simple language for storing data in a text format.
It encloses data within tags that delimit the data. You can give those tags any names that you want.
For example, the following text shows an XML fi le containing three Employee records:

 < ?xml version="1.0" encoding="utf-8" standalone="yes"? >
 < Employees >
 < Employee >
 < FirstName > Albert < /FirstName >
 < LastName > Anders < /LastName >
 < EmployeeId > 11111 < /EmployeeId >
 < /Employee >
 < Employee >
 < FirstName > Betty < /FirstName >
 < LastName > Beach < /LastName >
 < EmployeeId > 22222 < /EmployeeId >
 < /Employee >

c39.indd 887c39.indd 887 12/31/09 7:07:13 PM12/31/09 7:07:13 PM

Copyright Wrox Press. Posted with permission.

888 ❘ CHAPTER 39 USEFUL NAMESPACES

 < Employee >
 < FirstName > Chuck < /FirstName >
 < LastName > Cinder < /LastName >
 < EmployeeId > 33333 < /EmployeeId >
 < /Employee >
 < /Employees >

 The System.Xml namespace contains classes for reading, writing, and manipulating XML data.
Different classes let you process XML fi les in different ways. For example, the XmlDocument class
lets you represent an XML document completely within memory. Using this class, you can perform
complex manipulations of an XML fi le, adding and removing elements, searching for elements with
particular attributes, and merging XML documents.

 The XmlTextReader and XmlTextWriter classes let you read and write XML data in a fast,
forward - only fashion. These classes can be more effi cient than XmlDocument when you must
quickly build or scan very large XML fi les that might not easily fi t in memory all at once.

 The following code shows one way a program can use the System.Xml namespace to generate the
previous employee XML fi le:

Private Sub btnGo_Click() Handles btnGo.Click
 Dim xml_text_writer As _
 New XmlTextWriter("employees.xml", System.Text.Encoding.UTF8)

 ' Use indentation to make the result look nice.
 xml_text_writer.Formatting = Formatting.Indented
 xml_text_writer.Indentation = 4

 ' Write the XML declaration.
 xml_text_writer.WriteStartDocument(True)

 ' Start the Employees node.
 xml_text_writer.WriteStartElement("Employees")

 ' Write some Employee elements.
 MakeEmployee(xml_text_writer, "Albert", "Anders", 11111)
 MakeEmployee(xml_text_writer, "Betty", "Beach", 22222)
 MakeEmployee(xml_text_writer, "Chuck", "Cinder", 33333)

 ' End the Employees node.
 xml_text_writer.WriteEndElement()

 ' End the document.
 xml_text_writer.WriteEndDocument()

 ' Close the XmlTextWriter.
 xml_text_writer.Close()
End Sub

' Add an Employee node to the document.

c39.indd 888c39.indd 888 12/31/09 7:07:14 PM12/31/09 7:07:14 PM

Copyright Wrox Press. Posted with permission.

Advanced Examples ❘ 889

Private Sub MakeEmployee(ByVal xml_text_writer As XmlTextWriter,
 ByVal first_name As String, ByVal last_name As String,
 ByVal emp_id As Integer)
 ' Start the Employee element.
 xml_text_writer.WriteStartElement("Employee")

 ' Write the FirstName.
 xml_text_writer.WriteStartElement("FirstName")
 xml_text_writer.WriteString(first_name)
 xml_text_writer.WriteEndElement()

 ' Write the LastName.
 xml_text_writer.WriteStartElement("LastName")
 xml_text_writer.WriteString(last_name)
 xml_text_writer.WriteEndElement()

 ' Write the EmployeeId.
 xml_text_writer.WriteStartElement("EmployeeId")
 xml_text_writer.WriteString(emp_id.ToString)
 xml_text_writer.WriteEndElement()

 ' Close the Employee element.
 xml_text_writer.WriteEndElement()
End Sub

code snippet BuildMemoryXml

 The code starts by creating an XmlTextWriter object. This class provides methods for effi ciently
writing items into an XML fi le. The code sets the writer ’ s Formatting and Indentation properties to
make the object indent the resulting XML fi le nicely. If you don ’ t set these properties, the fi le comes
out all run together on a single line. That ’ s fi ne for programs that process XML fi les but makes the
fi le hard for humans to read.

 The program calls the WriteStartDocument method to write the fi le ’ s XML declaration, including
the XML version, encoding, and standalone attribute. It calls WriteStartElement to write the starting
 < Employees > XML tag and then calls subroutine MakeEmployee to generate three Employee items.
It calls the WriteEndElement method to write the < /Employees > end tag, and calls WriteEndDocument
to end the document. The program then closes the XmlTextWriter to close the fi le.

 Subroutine MakeEmployee writes a starting < Employee > element into the fi le. It then uses
the WriteStartElement, WriteString, and WriteEndElement methods to add the employee ’ s
FirstName, LastName, and EmployeeId elements to the document. The routine fi nishes by calling
WriteEndElement to create the < /Employee > end tag.

 Other classes within the System.Xml namespace let you load and manipulate XML data in memory,
read XML data in a fast forward – only manner, and search XML documents for elements matching
certain criteria. XML is quickly becoming a common language that allows unrelated applications to
communicate with each other. Using the XML tools provided by the System.Xml namespace, your
application can read, write, and manipulate XML data, too.

c39.indd 889c39.indd 889 12/31/09 7:07:15 PM12/31/09 7:07:15 PM

Copyright Wrox Press. Posted with permission.

890 ❘ CHAPTER 39 USEFUL NAMESPACES

 Cryptography

 The System.Security namespace includes objects for performing various cryptographic
operations. The four main scenarios supported by these objects include the following:

 Secret - key encryption — This technique encrypts data so you cannot read it unless you
know the secret key. This is also called symmetric cryptography.

 Public - key encryption — This technique encrypts data using a public key that everyone
knows. Only the person with a secret private key can read the data. This is useful if you
want to be the only one able to read messages anyone sends to you. This is also called
 asymmetric cryptography.

 Signing — This technique signs data to guarantee that it really came from a specifi c party.
For example, you can sign an executable program to prove that it ’ s really your program and
not a virus substituted by some hacker.

 Hashing — This technique maps a piece of data such as a document into a hash value so it ’ s
very unlikely that two different documents will map to the same hash value. If you know
a document ’ s hash value, you can later hash the document again and compare the values.
If the calculated value matches the previously known value, it is very unlikely that anyone
has modifi ed the fi le since the fi rst hashing.

 The example described later in this section encrypts and decrypts fi les. The basic idea is to create
a CryptoStream object attached to a fi le stream opened for writing. As you write data into the
CryptoStream, it encrypts or decrypts the data and sends the result to the output fi le stream.

 Although the classes provided by Visual Studio are easier to use than the routines contained in
the underlying cryptography API, the details are still somewhat involved. To encrypt and decrypt
fi les, you must fi rst select an encryption algorithm. You need to pick key and block sizes that are
supported by the corresponding encryption provider.

 To use an encryption provider, you must pass it a key and initialization vector (IV). Each of these is
a series of bytes that the encryption provider uses to initialize its internal state before it encrypts or
decrypts fi les.

 If you want to control the encryption with a textual password, you must convert it into a
series of bytes that you can use for the key and initialization vector. You can do that with a
PasswordDeriveBytes object, but that object also requires the name of the hashing algorithm that it
should use to convert the password into the key and initialization vector bytes.

 Working through the following example should make this less confusing. Example program AesFile,
which is available for download on the book ’ s web site, uses the AES (Advanced Encryption
Standard) algorithm to encrypt and decrypt fi les. The program uses the SHA384 hashing algorithm
to convert a text password into key and initialization vector bytes. (For information on AES, see
 en.wikipedia.org/wiki/Advanced_Encryption_Standard . For information on SHA384,
see en.wikipedia.org/wiki/Sha_hash .)

➤

➤

➤

➤

c39.indd 890c39.indd 890 12/31/09 7:07:16 PM12/31/09 7:07:16 PM

Copyright Wrox Press. Posted with permission.

Advanced Examples ❘ 891

' Encrypt or decrypt a file, saving the results
' in another file.
Private Sub CryptFile(ByVal password As String, ByVal in_file As String,
 ByVal out_file As String, ByVal encrypt As Boolean)
 ' Create input and output file streams.
 Dim in_stream As New FileStream(in_file, FileMode.Open, FileAccess.Read)
 Dim out_stream As New FileStream(out_file, FileMode.Create, FileAccess.Write)

 ' Make an AES service provider.
 Dim aes_provider As New AesCryptoServiceProvider()

 ' Find a valid key size for this provider.
 Dim key_size_bits As Integer = 0
 For i As Integer = 1024 To 1 Step -1
 If aes_provider.ValidKeySize(i) Then
 key_size_bits = i
 Exit For
 End If
 Next i
 Debug.Assert(key_size_bits > 0)

 ' Get the block size for this provider.
 Dim block_size_bits As Integer = aes_provider.BlockSize

 ' Generate the key and initialization vector.
 Dim key As Byte() = Nothing
 Dim iv As Byte() = Nothing
 Dim salt As Byte() = { & H0, & H0, & H1, & H2, & H3, & H4, & H5,
 & H6, & HF1, & HF0, & HEE, & H21, & H22, & H45}
 MakeKeyAndIV(password, salt, key_size_bits, block_size_bits, key, iv)
 ' Make the encryptor or decryptor.
 Dim crypto_transform As ICryptoTransform
 If encrypt Then
 crypto_transform = aes_provider.CreateEncryptor(key, iv)
 Else
 crypto_transform = aes_provider.CreateDecryptor(key, iv)
 End If

 ' Attach a crypto stream to the output stream.
 Dim crypto_stream As New CryptoStream(out_stream, crypto_transform,
 CryptoStreamMode.Write)

 ' Encrypt or decrypt the file.
 Const BLOCK_SIZE As Integer = 1024
 Dim buffer(BLOCK_SIZE) As Byte
 Dim bytes_read As Integer
 Do
 ' Read some bytes.
 bytes_read = in_stream.Read(buffer, 0, BLOCK_SIZE)
 If bytes_read = 0 Then Exit Do

 ' Write the bytes into the CryptoStream.
 crypto_stream.Write(buffer, 0, bytes_read)

c39.indd 891c39.indd 891 12/31/09 7:07:16 PM12/31/09 7:07:16 PM

Copyright Wrox Press. Posted with permission.

892 ❘ CHAPTER 39 USEFUL NAMESPACES

 Loop

 ' Close the streams.
 crypto_stream.Close()
 in_stream.Close()
 out_stream.Close()
End Sub

' Use the password to generate key bytes.
Private Sub MakeKeyAndIV(ByVal password As String, ByVal salt() As Byte,
 ByVal key_size_bits As Integer, ByVal block_size_bits As Integer,
 ByRef key As Byte(), ByRef iv As Byte())
 Dim derive_bytes As New Rfc2898DeriveBytes(txtPassword.Text, salt, 1000)

 key = derive_bytes.GetBytes(key_size_bits \ 8)
 iv = derive_bytes.GetBytes(block_size_bits \ 8
End Sub

code snippet AesFile

 Subroutine CryptFile encrypts or decrypts a fi le, saving the result in a new fi le. It takes as
parameters a password string, the names of the input and output fi les, and a Boolean indicating
whether it should perform encryption or decryption.

 The routine starts by opening the input and output fi les. It then makes an AesCryptoServiceProvider
object to provide the encryption and decryption algorithms using AES. The program must fi nd a key
length that is supported by the encryption service provider. This code counts backward from 1,024
until it fi nds a value that the provider ’ s ValidKeySize method approves. On my computer, the largest
key size the provider supports is 192 bits.

 The AES algorithm encrypts data in blocks. The program uses the provider ’ s BlockSize property to see
how big those blocks are. The program must generate an initialization vector that has this same size.

 The program calls the MakeKeyAndIV subroutine. This routine, which is described shortly,
converts a text password into arrays of bytes for use as the key and initialization vector. The salt
array contains a series of random bytes to make guessing the password harder for an attacker.
The Rfc2898DeriveBytes class used by subroutine MakeKeyAndIV can generate a random salt for
the program, but this example uses a salt array written into the code to make reading the code easier.

 After obtaining the key and initialization vector, the program makes an object to perform the
encryption or decryption transformation, depending on whether the subroutine ’ s encrypt parameter
is True or False. The program uses the encryption provider ’ s CreateEncryptor or CreateDecryptor
method, passing it the key and initialization vector.

 Now, the program makes a CryptoStream object attached to its output fi le stream. It passes the
object ’ s constructor and output fi le stream, the cryptographic transformation object, and a fl ag
indicating that the program will write to the stream.

 At this point, the program has set the stage and can fi nally begin processing data. It allocates a
buffer to hold data and then enters a Do loop. In the loop, it reads data from the input fi le into the
buffer. If it reads no bytes, the program has reached the end of the input fi le, so it exits the loop.
If it reads some bytes, the program writes them into the CryptoStream. The CryptoStream uses

c39.indd 892c39.indd 892 12/31/09 7:07:17 PM12/31/09 7:07:17 PM

Copyright Wrox Press. Posted with permission.

Advanced Examples ❘ 893

its cryptographic transformation object to encrypt or decrypt the data and sends the result to its
attached output fi le stream.

 When it has fi nished processing the input fi le, the subroutine closes its streams.

 Subroutine MakeKeyAndIV uses a text password to generate arrays of bytes to use as a key and
initialization vector. It begins by creating an Rfc2898DeriveBytes object, passing to its constructor
the password text, the salt, and the number of iterations the object should use to generate the
random bytes. The salt can be any array of bytes as long as it ’ s the same when encrypting and
decrypting the fi le. The salt makes it harder for an attacker to build a dictionary of key and
initialization vector values for every possible password string.

 Having built the PasswordDeriveBytes object, the subroutine calls its GetBytes method to get the
proper number of bytes for the key and initialization vector.

HOW EASY WAS THAT?

 Previous editions of this book used the triple DES (Data Encryption Standard)
algorithm to encrypt and decrypt fi les. However, DES is an old standard and
cryptographers now recommend using AES instead.

 The only thing I had to do to update this example was change the single statement
that created the cryptographic service provider to

Dim aes_provider As New AesCryptoServiceProvider()

 For clarity I also renamed the provider variable from des_provider to
aes_provider but the update really only required changing a single statement.
Setting up and using the cryptographic library takes a bit of work but the pieces are
fairly interchangeable so switching algorithms is easy.

 (Both the original program DesFile and new program AesFile are available for
download on the book ’ s web site.)

 The following code uses the CryptFile subroutine to encrypt and then decrypt a fi le. First it calls
CryptFile, passing it a password, input and output fi le names, and the value True to indicate that
the routine should encrypt the fi le. Next, the code calls CryptFile again, this time to decrypt the
encrypted fi le.

' Encrypt the file.
CryptFile(txtPassword.Text, txtPlaintextFile.Text, txtCyphertextFile.Text, True)

' Decrypt the file.
CryptFile(txtPassword.Text, txtCyphertextFile.Text, txtDecypheredFile.Text, False)

 The DesFile example program, which is available for download on the book ’ s web site,
demonstrates the CryptFile subroutine. Enter some text and a password, and then click the left >
button to encrypt the fi le. Click the right > button to decrypt the encrypted fi le and see if it matches
the original text.

c39.indd 893c39.indd 893 12/31/09 7:07:18 PM12/31/09 7:07:18 PM

Copyright Wrox Press. Posted with permission.

894 ❘ CHAPTER 39 USEFUL NAMESPACES

 If you change the password by even a single character, the decryption returns gibberish. Figure 39 - 1
shows the program trying to decrypt a message incorrectly. Before the program tried to decrypt the
fi le, I added an “ s ” to the end of the password. The result is completely unreadable.

 See the online help for information about the other main cryptographic operations (secret - key
encryption, public - key encryption, signing, and hashing). Other books may also provide additional
insights into cryptography. For example, the book Applied Cryptography: Protocols, Algorithms,
and Source Code in C, Second Edition (Schneier, Wiley Publishing, Inc., 1996) provides an
excellent overview of modern cryptography and describes many important algorithms in detail.
 Practical Cryptography (Ferguson and Schneier, Wiley, 2003) provides a higher level executive
summary of the algorithms and how to use them without covering implementation details.
 Cryptography for Dummies (Cobb, For Dummies, 2004) provides another high - level introduction
to basic cryptographic concepts such as hashing and public key encryption.

 Refl ection

 Refl ection lets a program learn about itself and other programming entities. It includes objects that
tell the program about assemblies, modules, and types.

 Example program Refl ectionFormProperties uses the following code to examine the program ’ s form
and display a list of its properties, their types, and their values:

Private Sub Form1_Load() Handles MyBase.Load
 ' Make column headers.
 lvwProperties.View = View.Details
 lvwProperties.Columns.Clear()
 lvwProperties.Columns.Add("Property", 10,
 HorizontalAlignment.Left)
 lvwProperties.Columns.Add("Type", 10,
 HorizontalAlignment.Left)
 lvwProperties.Columns.Add("Value", 10,
 HorizontalAlignment.Left)

 ' List the properties.
 Dim property_value As Object
 Dim properties_info As PropertyInfo() =
 GetType(Form1).GetProperties()

FIGURE 39-1: Changing even a single character in the password makes

decryption produce an unintelligible result.

c39.indd 894c39.indd 894 12/31/09 7:07:20 PM12/31/09 7:07:20 PM

Copyright Wrox Press. Posted with permission.

Advanced Examples ❘ 895

 lvwProperties.Items.Clear()
 For i As Integer = 0 To properties_info.Length - 1
 With properties_info(i)
 If .GetIndexParameters().Length = 0 Then
 property_value = .GetValue(Me, Nothing)
 If property_value Is Nothing Then
 ListViewMakeRow(lvwProperties,
 .Name,
 .PropertyType.ToString,
 " < Nothing > ")
 Else
 ListViewMakeRow(lvwProperties,
 .Name,
 .PropertyType.ToString,
 property_value.ToString)
 End If
 Else
 ListViewMakeRow(lvwProperties,
 .Name,
 .PropertyType.ToString,
 " < array > ")
 End If
 End With
 Next i

 ' Size the columns to fit the data.
 lvwProperties.Columns(0).Width = -2
 lvwProperties.Columns(1).Width = -2
 lvwProperties.Columns(2).Width = -2
End Sub

' Make a ListView row.
Private Sub ListViewMakeRow(ByVal lvw As ListView,
 ByVal item_title As String, ByVal ParamArray subitem_titles() As String)
 ' Make the item.
 Dim new_item As ListViewItem = lvw.Items.Add(item_title)

 ' Make the subitems.
 For i As Integer = subitem_titles.GetLowerBound(0) To _
 subitem_titles.GetUpperBound(0)
 new_item.SubItems.Add(subitem_titles(i))
 Next i
End Sub

code snippet Refl ectionFormProperties

 The program starts by formatting the ListView control named lvwProperties. Next, it defi nes
an array of PropertyInfo objects named properties_info. It uses GetType to get type information
about the Form1 class and then uses the type ’ s GetProperties method to get information about the
properties. The program then loops through the PropertyInfo objects.

c39.indd 895c39.indd 895 12/31/09 7:07:21 PM12/31/09 7:07:21 PM

Copyright Wrox Press. Posted with permission.

896 ❘ CHAPTER 39 USEFUL NAMESPACES

 If the object ’ s GetIndexParameters array contains no entries, the property is not an array. In that
case, the program uses the PropertyInfo object ’ s GetValue method to get the property ’ s value.
The code then displays the property ’ s name, type, and value.

 If the PropertyInfo object ’ s GetIndexParameters array contains entries, the property is an array.
In that case, the program displays the property ’ s name and type, and the string < array > .

 The subroutine fi nishes by sizing the ListView control ’ s columns and then making the form fi t the
columns.

 The helper subroutine ListViewMakeRow adds a row of values to the ListView control. It adds a
new item to the control and then adds subitems to the item. The item appears in the control ’ s fi rst
column and the subitems appear in the other columns.

 Using refl ection to learn about your application is interesting, but not always necessary. After all, if
you build an object, you probably know what its properties are.

 Refl ection can also tell you a lot about other applications. The Refl ectionGetResources example
program uses the following code to learn about another application. This program reads the
assembly information in a fi le (example Refl ectionHasResources is a resource - only DLL that this
program can examine) and lists the embedded resources that it contains. The user can then select a
resource to view it.

Private m_TargetAssembly As Assembly

' List the target assembly's resources.
Private Sub btnList_Click() Handles btnList.Click
 ' Get the target assembly.
 m_TargetAssembly = Assembly.LoadFile(txtFile.Text)

 ' List the target's manifest resource names.
 lstResourceFiles.Items.Clear()
 For Each str As String In m_TargetAssembly.GetManifestResourceNames()
 lstResourceFiles.Items.Add(str)
 Next str
End Sub

' List this file's resources.
Private Sub lstResourceFiles_SelectedIndexChanged()
 Handles lstResourceFiles.SelectedIndexChanged
 lstResources.Items.Clear()

 Dim resource_reader As ResourceReader
 resource_reader = New ResourceReader(
 m_TargetAssembly.GetManifestResourceStream(lstResourceFiles.Text))
 Dim dict_enumerator As IDictionaryEnumerator =
 resource_reader.GetEnumerator()
 While dict_enumerator.MoveNext()
 lstResources.Items.Add(New ResourceInfo(
 dict_enumerator.Key,
 dict_enumerator.Value))
 End While
 resource_reader.Close()
End Sub

c39.indd 896c39.indd 896 12/31/09 7:07:21 PM12/31/09 7:07:21 PM

Copyright Wrox Press. Posted with permission.

Advanced Examples ❘ 897

' Display the selected resource.
Private Sub lstResources_SelectedIndexChanged() _
 Handles lstResources.SelectedIndexChanged
 lblString.Text = ""
 picImage.Image = Nothing
 Me.Cursor = Cursors.WaitCursor
 Refresh()

 Dim resource_info As ResourceInfo =
 DirectCast(lstResources.SelectedItem, ResourceInfo)
 Select Case resource_info.Value.GetType.Name
 Case "Bitmap"
 picImage.Image = CType(resource_info.Value, Bitmap)
 lblString.Text = ""
 Case "String"
 picImage.Image = Nothing
 lblString.Text = CType(resource_info.Value, String)
 Case Else
 ' Try to play it as audio.
 Try
 My.Computer.Audio.Play(resource_info.Value,
 AudioPlayMode.WaitToComplete)
 Catch ex As Exception
 MessageBox.Show(resource_info.Key &
 " has an unkown resource type",
 "Unknown Resource Type", MessageBoxButtons.OK)
 End Try
 End Select

 Me.Cursor = Cursors.Default
End Sub

Private Class ResourceInfo
 Public Key As Object
 Public Value As Object
 Public Sub New(ByVal new_key As Object, ByVal new_value As Object)
 Key = new_key
 Value = new_value
 End Sub
 Public Overrides Function ToString() As String
 Return Key.ToString & " (" & Value.ToString & ")"
 End Function
End Class

code snippet Refl ectionGetResources

 The user enters the name of the assembly to load the txtFile text box. For example, this can be the
name of a .NET executable program.

 When the user clicks the List button, the btnList_Click event handler uses the Assembly class ’ s
shared LoadFile method to load an Assembly object representing the indicated assembly. It then
loops through the array of strings returned by the Assembly object ’ s GetManifestResourceNames
method, adding the resource fi le names to the ListBox named lstResourceFiles.

c39.indd 897c39.indd 897 12/31/09 7:07:22 PM12/31/09 7:07:22 PM

Copyright Wrox Press. Posted with permission.

898 ❘ CHAPTER 39 USEFUL NAMESPACES

 When the user selects a resource fi le from the list, the lstResourceFiles_SelectedIndexChanged
event handler displays a list of resources in the fi le. It uses the Assembly object ’ s
GetManifestResourceStream method to get a stream for the resources. It uses the stream to
make a ResourceReader object and then enumerates the items found by the ResourceReader. It
saves each object in a new ResourceInfo object (this class is described shortly) and adds it to the
lstResources list.

 When the user selects a resource from lstResources, its SelectedIndexChanged event handler
retrieves the selected ResourceInfo object, converts its Value property into an appropriate data type,
and displays the result. The ResourceInfo class stores Key and Value information for a resource
enumerated by a ResourceReader object ’ s enumerator. It provides an overloaded ToString that the
lstResources list uses to represent the items.

 This is admittedly a fairly complex example, but it performs the fairly remarkable feat of pulling
resources out of another compile application.

 Refl ection can provide a lot of information about applications, modules, types, methods, properties,
events, parameters, and so forth. It lets a program discover and invoke methods at runtime and
build types at runtime.

 An application also uses refl ection indirectly when it performs such actions as serialization, which
uses refl ection to learn how to serialize and deserialize objects.

 Refl ection is a very advanced and somewhat arcane topic, but it is extremely powerful.

 TPL

 The Task Parallel Library , or TPL , is a set of tools that make building parallel programs easier.
It provides a set of relatively simple method calls that launch multiple routines simultaneously on
whatever processors are available.

 Not long ago, only supercomputers contained multiple processing units, so only they could truly
perform more than one task at the same time. Desktop operating systems switched rapidly back
and forth between applications so it appeared as if the computer was performing a lot of tasks
simultaneously, but in fact it was only doing one thing at a time.

 More recently multi - processor computers are becoming quite common and relatively inexpensive.
Practically any computer vendor sells computers with two or four processors. Soon it ’ s likely that
you ’ ll be able to buy affordable computers with 8, 16, or possibly even dozens of processors.

 The operating system can use some of this extra computing power transparently to make your
system run more quickly, but if you have a computationally intensive application that hogs the
processor, you must take special action if you want to get the full benefi ts of all of your processors.

 To improve performance, you can launch multiple threads of execution to perform different tasks. If
you run the threads on separate processors, they can do their work at the same time.

 Unfortunately, writing safe and effective multi - threaded applications can be tricky. If you do it
wrong, the threads will interfere with each other, possibly making the application crash or even take
longer than it would on a single thread.

c39.indd 898c39.indd 898 12/31/09 7:07:23 PM12/31/09 7:07:23 PM

Copyright Wrox Press. Posted with permission.

Advanced Examples ❘ 899

 TPL is intended to make writing safe and effective multi - threaded applications easier. The TPL
methods are lightweight and don ’ t add too much overhead to an application so, if you need to
perform several tasks at once and you have multiple processors available, your program will
probably run faster. TPL overhead is fairly low, so even if you run the program on a single - processor
system, you don ’ t pay a huge penalty for trying to use multiple threads.

 Getting Started

 TPL is part of the System.Threading namespace. To make working with the namespace easier, you
can add the following Imports statement at the top of your program fi les.

Imports System.Threading.Tasks

 Now you ’ re ready to use TPL. The following sections describe some of the most useful TPL
methods: Parallel.Invoke, Parallel.For, and Parallel.ForEach.

 Parallel.Invoke

 The Parallel class contains methods for launching parallel threads. The Parallel.Invoke takes as
parameters a series of System.Action objects that give it information about the tasks it should
launch.

 The System.Action class is actually just a named delegate representing a subroutine that takes no
parameters so you can use the address of any subroutine.

 Example program ParallelInvoke shown in Figure 39 - 2
demonstrates the Parallel.Invoke method. As you can see,
the parallel version was signifi cantly faster on my dual - core
system.

 The following code shows how program ParallelInvoke uses
Parallel.Invoke:

Parallel.Invoke(
 AddressOf Fibonacci0,
 AddressOf Fibonacci1,
 AddressOf Fibonacci2,
 AddressOf Fibonacci3)

 The four Fibonacci routines simply evaluate the Fibonacci number for various values. For example,
the Fibonacci0 function shown in the following code gets the fi rst text box ’ s value stored in the
Numbers array, calls the Fibonacci function, and saves the result in the Results array.

Private Sub Fibonacci0()
 Results(0) = Fibonacci(Numbers(0))
End Sub

FIGURE 39-2: Parallel.Invoke runs

several subroutines on multiple threads.

c39.indd 899c39.indd 899 12/31/09 7:07:24 PM12/31/09 7:07:24 PM

Copyright Wrox Press. Posted with permission.

900 ❘ CHAPTER 39 USEFUL NAMESPACES

 FIBONACCI FUN

 The Fibonacci sequence is defi ned recursively by Fibonacci(0) = 1, Fibonacci(1) = 1,
and for larger values of N Fibonacci(N) = Fibonacci(N − 1) + Fibonacci(N − 2). The
fi rst 10 values are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, and 89.

 The function grows fairly quickly so, as you can see in Figure 39 - 2, Fibonacci(36) =
24,157,817.

More importantly for this example is the fact that the recursive defi nition is
an ineffi cient way to calculate Fibonacci numbers. To see why, consider that
calculating Fibonacci(N) requires calculating Fibonacci(N − 1) and Fibonacci
(N − 2). But calculating Fibonacci(N − 1) also requires calculating Fibonacci
(N − 2), so that value is calculated twice. During the course of a calculation,
intermediate values are calculated a huge number of times so the code takes a while
and the example has some nice long routines to parallelize.

 The following code shows the Fibonacci function.

Private Function Fibonacci(ByVal N As Long) As Long
 If N < = 1 Then Return 1

 Return Fibonacci(N - 1) + Fibonacci(N - 2)
End Function

 Before calling ParallelInvoke, this example stores the values N in an array. Each of the routines
looks only at its array entry and places its result in its own separate variable, which is also stored in
an array. That means the routines never read or write each other ’ s values. This is important because
parallel routines that work with the same variables may interfere with each other.

 For example, suppose one routine sets a variable ’ s value to 10 and another routine sets the same
variable ’ s value to 20. If the routines are running at the same time, you can ’ t tell which routine gets
there fi rst, so you don ’ t know what value the variable holds at the end.

 The following list summarizes some of the details you need to consider when working with multiple
threads:

 Two threads trying to access the same variables can interfere with each other.

Two threads trying to lock several shared resources can form a deadlock where neither can
continue until the other fi nishes.

 Parallel threads cannot directly access the user interface thread, so they cannot safely use
control properties.

 Some classes are not “ thread - safe ” so you cannot safely use them in multiple threads at the
same time.

 As long as separate threads use only their own variables and don ’ t try to interact with the user
interface thread, Parallel.Invoke is remarkably easy to use.

➤

➤

➤

➤

c39.indd 900c39.indd 900 12/31/09 7:07:25 PM12/31/09 7:07:25 PM

Copyright Wrox Press. Posted with permission.

Advanced Examples ❘ 901

 Parallel.For

 The Parallel.For method lets you invoke a single subroutine while passing it a series of numeric
values.

 Example program ParallelFor performs calculations similar to those performed by program Parallel.
Invoke except it uses the Parallel.For method.

 This version calls the FindFibonacci subroutine shown in the following code:

Private Sub FindFibonacci(ByVal index As Integer)
 Results(index) = Fibonacci(Numbers(index))
End Sub

 The index parameter tells which entry in the Numbers array is the Fibonacci number that the
routine should calculate. The Numbers array holds the numbers entered in the text boxes shown in
Figure 39 - 2. The code calls the Fibonacci function and saves the results in the Results array.

 The following code shows how the program calls subroutine FindFibonacci sequentially, passing it
the values 0 through 3:

For i As Integer = 0 To 3
 FindFibonacci(i)
Next i

 The program uses the following code to make the same subroutine calls in parallel:

Parallel.For(0, 3, AddressOf FindFibonacci)

 The results of the two calculations are the same but the parallel version takes only about 41% as
long on my dual - core system.

 Parallel.For is most useful when you need to call a routine many times with different numeric
inputs.

 Parallel.ForEach

 As you may be able to guess, the Parallel.ForEach method is similar to Parallel.For except it passes
a series of objects from a collection into the subroutine instead of a series of sequential values.

 Example program ParallelForEach performs the same Fibonacci calculations as the previous
examples except it uses the Parallel.ForEach method. The following code shows the FiboInfo class
that it passes in the parallel subroutine calls:

Private Class FiboInfo
 Public N As Long
 Public Result As Long
End Class

 The following code shows the new FindFibonacci subroutine. The FiboInfo parameter both tells the
routine which Fibonacci number to calculate and holds the result.

c39.indd 901c39.indd 901 12/31/09 7:07:26 PM12/31/09 7:07:26 PM

Copyright Wrox Press. Posted with permission.

902 ❘ CHAPTER 39 USEFUL NAMESPACES

Private Sub FindFibonacci(ByVal fibo_info As FiboInfo)
 fibo_info.Result = Fibonacci(fibo_info.N)
End Sub

 The following code shows the key parallel pieces of example program ParallelForEach. This code
fi rst initializes the fi bo_info array and then uses Parallel.ForEach to pass its values to different calls
to subroutine FindFibonacci.

Dim fibo_info() As FiboInfo = {
 New FiboInfo() With {.N = CLng(txtNum0.Text)},
 New FiboInfo() With {.N = CLng(txtNum1.Text)},
 New FiboInfo() With {.N = CLng(txtNum2.Text)},
 New FiboInfo() With {.N = CLng(txtNum3.Text)}
}

Parallel.ForEach(fibo_info, AddressOf FindFibonacci)

 Once again, the results are the same as in the previous examples, but the parallel version takes less
time than the sequential version.

 There are still plenty of TPL details that I don ’ t have room to cover here. The library provides other
classes and methods for executing tasks in parallel and there are many ways you can coordinate
among different threads. For more information on TPL, search the Web for articles such as these
two of mine posted by DevX.com:

 Getting Started with the .NET Task Parallel Library (www.devx
.com/dotnet/Article/39204)

 Getting Started with the .NET Task Parallel Library: Multi - Core Case Studies (www.devx
.com/dotnet/Article/39219)

 These articles contain more detailed information and other examples.

 SUMMARY

 The .NET Framework defi nes hundreds of namespaces, and this chapter described only a few.
It provided a brief overview of some of the most important System namespaces and gave more
detailed examples that demonstrated regular expressions, XML, cryptography, refl ection, and TPL.

 Even in these somewhat specialized areas, the examples can cover only a tiny fraction of the
capabilities of the namespaces; however, the examples should give you an idea of the types of
features that these namespaces can add to your application. If you need to do something similar,
they will hopefully inspire you to do more in - depth research so that you can take full advantage of
these powerful tools.

 The chapters in this book cover a wide variety of Visual Basic programming topics. In the fi rst part
of the book, Chapters 1 through 7 describe the Visual Studio integrated development environment
and many of the tools that you use to build Visual Basic programs. In the second part of the book,
Chapters 8 through 24 explained basic topics of Visual Basic programming (such as the language

➤

➤

c39.indd 902c39.indd 902 12/31/09 7:07:27 PM12/31/09 7:07:27 PM

Copyright Wrox Press. Posted with permission.

itself, using standard controls, and drag and drop). In the third part of the book, Chapters 25
through 29 describe object - oriented concepts (such as class and structure declaration, namespaces,
and generics). In the fourth part of the book, Chapters 30 through 35 cover graphical topics (such as
how to draw shapes and text, image manipulation, printing, and report generation). In the fi fth part
of the book, Chapters 36 through 40 explain ways a program can interact with its environment by
using techniques such as confi guration fi les, the Registry, streams, and fi le - system objects.

 The rest of this book contains appendices that provide a categorized reference for Visual Basic
.NET. You can use them to review quickly the syntax of a particular command, select from among
several overloaded versions of a routine, or refresh your memory of what a particular class can do.

Summary ❘ 903

c39.indd 903c39.indd 903 12/31/09 7:07:27 PM12/31/09 7:07:27 PM

Copyright Wrox Press. Posted with permission.

c39.indd 904c39.indd 904 12/31/09 7:07:28 PM12/31/09 7:07:28 PM

Copyright Wrox Press. Posted with permission.

